

Huron Net Works, Inc.

DN-SLIP

DeviceNet Serial Link Interface Protocol

Functional Specification

Publication #2200092 Revision History

Revision Date Description

0.1 4/26/02 Original pre-release
0.2 5/1/02 Add Serial Link Object
0.3 5/2/02 Add Diagnostic Modes
0.4 5/17/02 Implementation Revisions, Wait for baudrate and MACId Proposal
0.5 6/12/02 Serial Link Object Revisions
0.6 6/28/02 MacId and Baudrate Override

DN-SLIP Functional Specification

Publication #2200092
Page 2 of 15

Preface

This specification is inspired by the referenced works, and provides a straightforward
mechanism for the encapsulation and transmission of DeviceNet “datagrams” over serial
lines. Although the term “datagram” is not referenced in the DeviceNet specification it fits
very well.

“If I have been able to see further, it was only because I stood on the shoulders of
giants.”

Sir Isaac Newton

Notation

Object Instance Attribute Addresses

are represented as a triple of numbers enclosed in curly braces. For example the
notation {3,1,1} represents the DeviceNet Class, Class #3, Instance #1 of the
DeviceNet Class, and Attribute #1 of Instance #1 of the DeviceNet Class. This
particular reference refers to the DeviceNet MacId.

References

1. DeviceNet Specification, Volumes I and II, Release 2.0, Errata 5
2. Romkey, J.,STD0047 (RFC 1055), A NONSTANDARD FOR TRANSMISSION OF

IP DATAGRAMS OVER SERIAL LINES: SLIP, JUNE 1988.

DN-SLIP Functional Specification

Publication #2200092
Page 3 of 15

1 Introduction

1.1 Purpose
The purpose of this specification is to define methods and protocol for adding a Serial Link
to a DeviceNet product. It covers the low level framing protocol and how to encapsulate
DeviceNet messages so that they may be passed to and from a device at the other end of
the Serial Link.

There are many potential application specifications for how messages are handled. The
initial application specification allows I/O messages to pass through the device in a
transparent fashion. Explicit messages on the Serial Link are processed locally within the
device and are not passed onto the DeviceNet network. The acronym for this application
is LETIO which stands for Local Explicit and Transparent I/O.

1.2 Environment
The DeviceNet Serial Link Interface Protocol applies to a product that has both a
DeviceNet/CAN network attachment and an RS-232/RS-485 Serial UART attachment.
Some assumptions about these attachments will drive some of the aspects of this
specification.

1.2.1 Serial Link
The serial link physical layer will attach to an Asynchronous UART. The most likely
configuration of the UART parameters will be:

Parameter Value
Parity None
Data Bits 8
Stop Bits 1
Baudrate 9600

Other baudrates and serial framing combinations are possible and the particular values will
be encoded as attributes of a Serial Link Object.

The serial link is assumed to be point to point. So the concepts of source and destination
addresses are not relevant. Since that is the case, the non DeviceNet end of the serial
link, may assign any value to any MacId address bits it may need to use in constructing a
DeviceNet identifier . If a device knows the value of the MacId address bits for a
DeviceNet connection, then that value can be used. If a device does not know what value
of MacId address bits to use, all zeros is the preferred, but not required choice.

1.2.2 DeviceNet Link
The DeviceNet Link will attach to a CAN Controller. It will be assumed that all three
baudrates (500 kbps,250 kbps,125 kbps) will be supported. It is assumed that the
DeviceNet side has a method of determining MacId and baudrate independently of the
serial link. The serial link may have the ability to change or override the choice of baudrate

DN-SLIP Functional Specification

Publication #2200092
Page 4 of 15

and MacId for the DeviceNet connection. If this is allowed then the determination of MacId
and baudrate at Power Up/Reset will occur as follows:

If the device has switches, and the baudrate switches are in the set {00, 01, 10}
corresponding to the standard baudrates: 125kbps, 250kbps, and 500kbps then baudrate
and MacId are determined as follows:

1. Get baudrate and MacId from the switches
2. Execute the Network Access State Machine
3. Go Online
4. Set_Attribute_Single to baudrate or MacId returns an error

If the device has no switches or has switches, and the baudrate switches are in the set
{11} corresponding to an undefined baudrate value, then baudrate and MacId are
determined as follows:

1. Get baudrate and MacId from Non-Volitile memory or, if Non-Volitile memory is
invalid use the default baudrate of125kbps, and default MacId of 63

2. Execute the Network Access State Machine
3. Go Online
4. Set_Attribute_Single to baudrate or MACId overrides the current settings

In neither case does the device have to wait for baudrate or MACId.

1.2.2.1 MacId and Baudrate Override
There will be a configuration parameter, with permission bits, which say if either the
DeviceNet side or the Serial Link side is allowed to override the MacId and Baudrate. If
there are hardware switches then the switches must be in the {11xx xxxx} undefined or soft
settable state. It the switches are in the correct state and the permission bit is a 1 then a
Set Attribute Single to the MacId {3,1,1} or the Baudrate {3,1,2} will change the respective
value. When the MacId is changed the device will execute the Network Access State
Machine. That means the two DUP MAC Check Messages are sent out with the new
MacId. When the Baudrate is changed, it does not take effect until there is a RESET to
the Identity Object or a power cycle.

DN-SLIP Functional Specification

Publication #2200092
Page 5 of 15

2 Basic Serial Link Framing

2.1 Begin/End Frame Delimiter
Each serial link frame ends with a framing delimiter, 0xC0. A serial link
transmitter may send multiple framing delimiters without causing a serial link
receiver any upset. A serial link transmitter can begin a frame with an End
Delimiter to clear out any characters, which may be present in a serial link
receiver. A serial link receiver will discard multiple consecutive framing delimiters
except the last one. In the following paragraphs the framing delimiter will be
referred to as just the End Delimiter.

2.2 Escape Sequence
If a data byte between the framing delimiters has the value 0xC0 then a serial
link transmitter will send the two character sequence 0xDB, 0xDC. A serial link
receiver will convert the sequence 0xDB, 0xDC back to a data value of 0xC0. If
a data byte between the framing characters has the value 0xDB then a serial link
transmitter will send the two character sequence 0xDB, 0xDD. Escape
sequences do not affect checksum or CRC algorithms. The checksum or CRC is
computed on the actual data values in the frame and not on the escape
sequence values.

2.3 Transmitter Behavior
A serial link transmitter should begin each frame with a framing character. It
should end each frame with a framing character. There should be, as a
parameter or a pre-defined constant, a maximum number of characters that can
occur between the framing characters. It should be a goal of the application
firmware to have as an upper bound on the transmit time of:

frame
UB

frame
char

N
char
bits

bits
sec

10

sec
9600

1
*4 =

A serial link transmitter may join together multiple frames without sending
multiple framing characters. That is, the End Delimiter of one frame can be the
Begin Delimiter of the next frame, or conversely the Begin Delimiter of a frame
can be the End Delimiter of the previous frame.

2.4 Receiver Behavior

2.4.1 Normal Behavior
A serial link receiver should ignore all incoming characters until it sees a framing
character. It should ignore multiple consecutive framing characters except the

DN-SLIP Functional Specification

Publication #2200092
Page 6 of 15

last one. The same parameter or pre-defined constant, which specifies a
maximum number of characters between the framing characters for the serial link
transmitter, also applies to the serial link receiver. This means that if this limit is
exceeded the receiver can throw away the long frame and wait for the next End
Delimiter.
The escape sequences are processed as follows:

0xDB, 0xDC → 0xC0
0xDB, 0xDD → 0xDB

In the case where the character following the escape character (0xDB) is not one
of the legal successor characters a protocol violation has occurred. In this case
the escape character is ignored and the character is accepted literally. In some
cases a length check or checksum calculation can detect this kind of error. Any
invalid frame may be discarded and ignored. No response to an invalid frame is
required.

Once a valid frame has been received it should be a goal of the application
firmware to begin a required response within ten (10) character times or:

.sec10

sec
9600

1
*10*10 m

bitschar
bits

≈

These conditions on transmission time and turnaround time will allow and upper
bound on the total transaction time to be calculated.

2.4.2 Receiver Error Behavior

All error conditions detected by the Serial Link Receiver including:

• Character framing and/or parity errors
• Checksum errors
• Too many characters between framing delimiters
• I/O message longer than produced connection size
• Invalid Identifiers

Are handled by ignoring the entire frame and transmitting no response.

DN-SLIP Functional Specification

Publication #2200092
Page 7 of 15

3 DeviceNet Message Encapsulation

3.1 Unfragmented Messages
The essential parts of an unfragmented DeviceNet message are the 11-bit CAN
identifier and the [0..64] bit data field. In a CAN frame the length of the valid data
is given explicitly. In the Serial Link frame the length will be determined implicitly
because, in most cases, in the transfer of I/O messages the same number of
bytes are always transferred, and this is the process we wish to optimize.

To frame a DeviceNet message for the Serial Link we concatenate the 11-bit
identifier field, right justified and zero filled, with the zero to eight-byte data field
followed by a one byte 2’s complement checksum of the identifier and the data
field. Any numeric quantity whose representation exceeds 8 bits will be sent over
the Serial Link in little -endian form.

Example 1: Over the Serial Link a message to change the Poll Response Data
from its current value to <0x00, 0x00> would look like:

C0 DB DC 03 00 00 3D C0
End ID.low = C0 ID.high Data Data CkSum End

The ID field of 0x3C0 is the CAN identifier for the DeviceNet message: “Poll
Response from node 0”. The use of node 0 as the source of a DeviceNet
message is actually a polite fiction since the real node zero either does not exist
or is on the DeviceNet network. On the Serial Link, the sender of a Poll
Response message may use any value for the Source MACId bits. On the Serial
Link the receiver of a Poll Response message will ignore these bits. The new
data of <00 00> will be returned over DeviceNet in a Poll Response Message
which is triggered by the consumption of a Poll Request Message. It is a
coincidence that the DeviceNet/CAN Identifier chosen for this example happens
to be a value that requires the use of an escape sequence. The Poll Response
Identifier of 0x3C0 decodes as a Group 1 Message, Message Id 15, Source
MACId 0. Since we could use any source MACId, we could save a byte in
transmitting this message by using Identifier 0x3C1. If we did this, the above
message would look like:

C0 C1 03 00 00 3C C0
End ID = 3C1 Data Data CkSum End

Over the Serial Link we do not care about the value of any MACId bits. If the
message comes to us over the Serial Link we must be the correct destination.
When we respond we always use our current valid MACId. The client endpoint
of the DN-SLIP connection could use this value of MACId in subsequent
messages, but this is not required.

DN-SLIP Functional Specification

Publication #2200092
Page 8 of 15

3.2 Fragmented Messages
The Serial Link does not have the same message length limitations as the
DeviceNet/CAN side. For this version of the DN-SLIP application protocol the
data field of a frame is from zero to 256 bytes in length. With the addition of a
two-byte identifier and a one-byte checksum this means there can be up to 259
characters between the End Delimiters. The character stuffing escape sequence
does not affect this calculation but it does affect the time to transmit or receive a
frame. In this version of the application protocol, messages are not passed
directly from DeviceNet to the Serial Link, so we do not need to take account of
fragmentation.

Example 2: The current data used to construct a Poll Response on the
DeviceNet Link is the following ten byte string:

<01 22 03 44 05 66 07 88 09 AA>

and we want to change it the following ten byte string:

<11 02 33 04 55 06 77 08 99 0A>

This would be accomplished with the following message over the Serial Link:

C0 DB DC 03 11 02 33 04
End ID.low = C0 ID.high Data Data Data Data

55 06 77 08 99 0A 76 C0

Data Data Data Data Data Data CkSum End

Since message length over the Serial Link is determined implicitly we can send a
message with a length longer than eight bytes, which would have required
fragmentation on the DeviceNet side.

DN-SLIP Functional Specification

Publication #2200092
Page 9 of 15

4 Message Specific Behavior

4.1 Transparent I/O Message Behavior

4.1.1 Poll Response Messages – Identifiers in the range {[3C0]..[3FF]}
A Poll Response Message has [0,15,xx] for an identifier. This decodes as Group
1, Message ID 15, and any Source MACId. When the Serial Link Receiver
receives this message it performs an atomic update on an area of memory that is
used to construct the response to a Master’s Poll Request [2,xx,5], which
decodes as Group 2, any destination MACId, Message ID 5. The Serial Link
Transmitter should never transmit a message with an Identifier in the Poll
Response Message range. In addition to the atomic update of the Poll Response
Data, the Serial Link Transmitter will respond with a message containing the Poll
Request Data.

4.1.2 Poll Request Messages – Identifiers in the set { [405], [40D], …[5FF]}
A Poll Request Message [2,xx,5] should never be received by the Serial Link
Receiver. It is the response to the consumption of the Poll Response Message
by the Serial Link Receiver. The data field of a Poll Request Message is an
atomic snapshot of the most recent incoming Poll Request Data from the
DeviceNet port. The correct MacId for the device will be used to construct the
identifierin the serial frame.

4.1.3 COS/Cyclic I/O Messages – Identifiers in the range {[340]..[37F]}
A COS/Cyclic I/O Message has [0,13,xx] for an Identifier. This decodes as
Group 1, Message ID 13, and any source MacId. When the Serial Link Receiver
receives this message it performs an atomic update on an area of memory that is
used to construct the COS/Cyclic message. This will probably trigger a change
of state production on the DeviceNet link. The Serial Link Transmitter should
never transmit a message in the COS/Cyclic I/O message range. In addition to
the atomic update of the COS/Cyclic response data, the Serial Link Transmitter
will respond with a Change of State Acknowledge Message [2,xx,2] that contains
no data. This response will ignore the state of the ACK Suppress bit, which
governs the behavior on the DeviceNet side.

4.1.4 COS/Cyclic Acknowledge Messages – Identifiers in the set {[402], [40A],
…, [5FA]}

The Serial Link Receiver should never receive a COS/Cyclic Acknowledge
Message. It is the response to the consumption of the COS/Cyclic I/O Message.
The data field of this message is empty. The correct MACId for the device will be
used to construct the identifier in the serial frame.

DN-SLIP Functional Specification

Publication #2200092
Page 10 of 15

4.1.5 Bit Strobe Response/Request
All message identifiers associated with the Bit Strobe Connection will be ignored
by DN-SLIP.

4.1.6 Multicast Poll Response/Request
All message identifiers associated with the Multicast Poll Connection will be
ignored by DN-SLIP.

4.2 Explicit Message Behavior

4.2.1 Master’s Explicit Request Messages – Identifiers in the set {[404], [40C],
…, [5FC]}

A Master’s Explicit Request [2,xx,4] will behave as if the Serial Link was the
same as the DeviceNet Link. That is the request will be processed locally by the
device as if it had come in over DeviceNet. This means that the device at the
other end of the Serial Link has an ability similar to the DeviceNet Master. It can
use services like Get_Attribute_Single and Set_Attribute_Single to read and write
attributes(data) in the device. The rules on which attributes, of which instances,
of which objects are visible and/or settable will be different between the Serial
Link and the DeviceNet Link. The data field follows the format of the Explicit
Message on the DeviceNet side. The most likely format for the message body
will be 8-bit class and 8-bit instance. The Frag bit in the Explicit Message
Header should always be set to zero since fragmentation is not necessary on the
Serial Link.

4.2.2 Slave’s Explicit Response Messages – Identifiers in the set {[403], [40B],
…[5FB]}

The Slave’s Explicit Response [2,xx,3], which decodes as Group 2, my MACId,
and Message Id 3 will be sent in response to a Master’s explicit request. The
format of the data will be the same as for the DeviceNet Explicit Response
including the Error Response. The Frag bit in the Explicit Message Header will
always be set to zero since fragmentation is not necessary on the Serial Link.

4.3 Other Message Identifiers
Other message identifiers, which are part of the DeviceNet/CAN Protocol in the
range of [0..2047], not specifically defined above, are undefined in DN-SLIP.
Identifiers in the range 2048-65535 are reserved for future applications and are
undefined..

4.3.1 Undefined Identifier
The reception of a frame with an undefined identifier causes the frame to be
discarded and no response to be sent.

DN-SLIP Functional Specification

Publication #2200092
Page 11 of 15

5 DN-SLIP Client Description

5.1 Interrogating a DN-SLIP Server
The client side of a DN-SLIP connection, over a Serial Link, can use the pre-
defined and always available Serial Link connection. This connection will not be
represented by an instance of the connection object. It is not important to
capture the behavior of individual connections over the Serial Link. The pre-
defined Serial Link Connection will be used in conjunction with the Serial Link
Object, which is patterned after the DeviceNet Object.

5.1.1 Explicit Messages
When using Explicit Message Identifiers, the client, sends Explicit Requests
[2,xx,4] and receives Explicit Responses [2,xx,3] over the Serial Link.

5.1.2 Poll I/O Messages
With respect to Poll I/O Messages the client sends a Poll Response Message
[0,15,xx] to update the data in the DeviceNet server. The DeviceNet server
responds with a Poll Request Message [2,xx,5] to inform the client of the most
recent Poll Request data which has arrived from the DeviceNet port.

5.1.3 COS/Cyclic Messages
The client sends COS/Cyclic Messages [1,D,xx] to update the data in the
DeviceNet server. The DeviceNet Server responds with a COS Ack[2,xx,2] and
no data.

DN-SLIP Functional Specification

Publication #2200092
Page 12 of 15

6 Serial Link Object
Class Code: 0x6A

This object provides the support for a serial link connection, attached to an
asynchronous UART device. There should be one instance of this object for
each physical or software simulated UART.

6.1 Class Attributes
Attribute
ID

Need in
Implementation

Access
Rule

Name DeviceNet
Data Type

Description of Attribute

1 Conditional Get Revision UINT Revision of this object
Current Value = 0x0001

2 Conditional Get Max Instance UINT Maximum instance number
3-7 Optional These attributes are optional and described in Volume II chapter 5 of

the DeviceNet Specification

6.2 Instance Attributes
Attribute
ID

Need in
Implementation

Access
Rule

Name DeviceNet
Data Type

Description of Attribute

1 Required Set Baudrate UINT Nominal Baudrate in bits
per second. Default is:
9534 = 0x253E

2 Required Set Mode USINT ‘A’ – Asyncronous (Default)
‘S’ – Syncronous

3 Required Set Parity USINT ‘N’ – No Parity (Default)
‘E’ – Even Parity
‘O’ – Odd Parity
‘0’ – Zero Stick Parity
‘1’ – One Stick Parity

4 Required Set Data Bits USINT ‘5’ – 5-bit
‘6’ – 6-bit
‘7’ – 7-bit
‘8’ – 8-bit (Default)

5 Required Set Stop Bits USINT ‘1’ – One Stop Bit (Default)
‘2’ – Two Stop Bits
‘H’ – One and ½ Stop Bits

6 Required Set Check Sum USINT ‘0’ – 2’s Complement
(Default)
‘1’ – Straight Sum

7 Required Set Diagnostic Action USINT ‘0’ – No Diagnostic Action
‘1’ – Echo
‘2’ – Transmit Character
‘3’ – Transmit Frame

8 Required Set Diagnostic
Character

USINT Any value in the range
[0..255]

9 Required Set Link Timer UINT Any value in the range
[0..65535] in milliseconds

10 Optional Set Rx Framing Error USINT [0..255]
11 Optional Set Rx Data Overrun USINT [0..255]
12 Optional Set Tx Data Overrun USINT [0..255]
13 Optional Set Rx_Proc Overun USINT [0..255]
14 Optional Set Rx Buffer ARRAY 13 bytes

DN-SLIP Functional Specification

Publication #2200092
Page 13 of 15

15 Optional Set Rx Buffer Length USINT [0..255]
16 Optional Set Diag 0 USINT [0..255]
17 Optional Set Diag 1 USINT [0..255]
18 Optional Set Diag 2 USINT [0..255]

Each of the instance attributes in the range[1..9] is required in an implementation.
A product is not required to support all possible values for an attribute. If only
one alternative is supported then the access rule may be restricted to Get. If
none of the attributes are settable, then they just document the implementation.
It is also possible that different rules may apply for Explicit Requests from the
Serial Link than Explicti Requests from the DeviceNet Link.

6.3 Common Services
The Serial Link Object provides the following Common Services

Need in Implementation

Service
Code

Class

Instance

Service Name
Description of Service

0x0E Conditional Required Get_Attribute_Single Returns the content of
the specified Attribute

0x10 No Conditional Set_Attributte_Single Modifies the value of an
Attribute

6.4 Diagnostic Action Behavior

Each of the following diagnostic action modes is entered by setting the value of
the Diagnostic Action attribute to a particular non-zero value with an Explicit
Message.

6.4.1.1 Diagnostic Action 1: Echo

In this state all characters consumed by the Serial Link Receiver are echoed to
the Serial Link Transmitter as quickly as possible. The Serial Link Object will
stay in this state until the Diagnostic Action attribute changed.

6.4.1.2 Diagnostic Action 2: Transmit Diagnostic Character

In this state, the Serial Link Transmitter will send the Diagnostic Character
continuously at a rate determined by the Serial Link Timer which is expressed in
units of milliseconds. An End Delimiter (0xC0) will stop the continuous
transmission. While stopped, any other character will caus the continuous
transmission to restart.

DN-SLIP Functional Specification

Publication #2200092
Page 14 of 15

6.4.1.3 Disgnostic Action 3: Transmit Frame

In this state, the Seria Link Transmitter will send the current frame in response to
any single character.

DN-SLIP Functional Specification

Publication #2200092
Page 15 of 15

Appendix A
Examples

1. Explicit Request to Get Vendor Id which is {1,1,1} or Class 1, Instance 1,
Attribute 1. SEND

C0 04 04 00 0E 01 01 01
End Id.low Id.High Hdr Service Class Inst Attr
E7 C0

CkSum End

2. Explicit Response to Get Vendor Id, Assume Vendor ID = 0x0014 which
is the Huron Net Works Vendor ID. Assume furthur that MACId od the
DeviceNet Server is 42 or 0x2A. RECEIVE

C0 53 05 00 8E 14 00 06
End Id.low Id.High Hdr Service VId.low VId.high CkSum
C0
End

3. Update five bytes of Poll Response Data. Data is <00 0F FA C6 55>

SEND

C0 05 04 00 0F FA C6 55
End Id.low Id.High Data Data Data Data Data
D3 C0

CkSum End

4. Get four bytes of Poll Request Data. Data is <00 FF FF 00>. RECEIVE

C0 EA 03 00 FF FF 00 15
End Id.low Id.High Hdr Service VId.low VId.high CkSum
C0
End

From the client end point in the outgoing messages the MACId bits are don’t care
and always sent as zeros. In the incoming messages the server always supplies
its correct MACId. In this fashion a change of MACId could be detected.

