
Pub # 2505003 Revision 1.07 13 April 2006

User’s Guide

DeviceNet
Master Emulator

DN-EMU

2

Pub # 2505003 Revision 1.07 13 April 2006

1. GETTING STARTED

1.1. General Description

The DN-EMU Emulator is an application for the Huron Net Works DeviceGate hardware. It is
a general purpose tool for use in the development and debugging of DeviceNet nodes.
The emulator monitors DeviceNet bus traffic, and generates messages for configuring or testing
nodes on the bus.

The DeviceGate hardware is a DeviceNet-to-Ethernet interface. The DeviceGate contains a
single chip PC with a DOS-like file system in flash memory, plus a web server and TCP/IP
stack. The emulator application transfers DeviceNet data to ethernet using HTML and XML via
the web server.

A personal computer workstation with an ethernet card and an internet browser is used to
connect to the DeviceGate and provides the user interface to the emulator. The DeviceGate is
configured with an IP address and this address is entered into the browser to access the
emulator.

The emulator application consists of a set of files that reside in flash memory on the DeviceGate.
A combination of executable code, Javascript and HTML is used to define the user interface.
The user who is familiar with writing HTML and JavaScript will be able to add customized
featrues. This manual will give examples of how to do this.

1.2. Requirements

1. A DeviceGate interface with pre-installed emulator files. The files are:

o hnw.css A style sheet for the configuration web pages
o emu.css A style sheet for the emulator web pages.
o dmem.exe The emulator executable
o autoexec.bat For autostart of the application
o chip.ini Configuration info such as the IP address
o emu.js Javascript for basic emulator web pages
o emu1.htm Emulator web page
o emu2.htm Emulator web page
o example.htm Example page to demonstrate customization
o example.js Javascript for user customizable features

2. A 10 Mb ethernet network with a twisted pair connection for the DeviceGate. Alternatively,

a point-to-point connection can be made using a cross-over ethernet cable.

3

Pub # 2505003 Revision 1.07 13 April 2006

3. A DeviceNet connection with 24 v DC power. The DeviceGate receives its power from the

DeviceNet connection.

4. The CD ROM with DG tools install software and backup copies of the application files.

5. A PC with

o a 10 Mb ethernet card.
o An internet browser, either Netscape 6.2 or Internet Exlorer 5 (or later).
o DeviceGate IP configuration tool.

1.3. Installation

The DeviceGate ethernet interface will need to be assigned an IP address that can be used for
access by your browser. This address will be loaded into the DeviceGate using the IP
configuration tool provided on the CD-ROM.

Install the configuration tool as a program on your PC by running setup.exe in the DGTools
folder of the CD-ROM. This will create an item in your startup menu under Huron Net Works .

If the DeviceGate is connected directly to the PC ethernet adapter with a crossover ethernet
cable, the IP address will not interfere with other nodes and can be assigned arbitrarily. In this
case one could use a number such as 192.168.1.100.

If the DeviceGate will be on a hub with other nodes, the administrator of that network will need
to provide you with an available IP address.

When you are ready to configure the DeviceGate, attach it to the DeviceNet Bus and apply
power to the bus. The DeviceGate link LED will flash green twice. When you connect the
ethernet cable, the LED will come on solid green and flash when there is traffic on the network.

Next start DeviceGate Tools. Click the Discover button to identify all DeviceGate interfaces on
the network. They will be identified by the serial number of their processor. The current
network configuration of each DeviceGate will be shown by opening the plus sign (+). Using the
mouse, highlight the words ‘Network Configuration’. This makes the ‘Configure’ button
available. The Configure button opens a dialog window for entering an IP address, a Net Mask,
and a Gateway address.

4

Pub # 2505003 Revision 1.07 13 April 2006

After entering a new configuration, it is necessary to cycle power to the DeviceGate. Then you
can proceed to access the application with your browser (see section 2).

1.4. Screen Layout

The screen consists of a panel of control buttons on the left with a frame to the right for the
display of responses and DeviceNet messages. At the bottom are a row of navigation buttons
for linking to other pages that can be used for customized commands.

In the result window, the received messages are shown in hexadecimal form with the CAN
identifier enclosed in square brackets [] and the CAN data field enclosed in angle brackets <
> . Where possible a text description of the message is given on the same line.

1.5. User Input

Commands are initiated through the buttons of the control panel and the navigation buttons.

Some command buttons will call a pop-up dialogue window for entry of a function’s
parameters. On clicking the submit button in a pop-up window, a request is sent to the
DeviceGate web server by the user’s browser. There may be a slight delay while the commands
are processed and the results are returned. If there is no response (for instance if the network is
down or the cable was disconnected), the command will time out and the result window will
display “no response”.

1.6. Printing and Saving Data

The normal methods of saving and printing data with a browser can be used to obtain records
of DeviceNet traffic from the message buffer.

Information in the display window (the white area) can be printed by right clicking in the
window frame and using your browser’s print commands.

To save the data to a file or to add notations before printing, right click in the white area and
“select all”. Then use ctl-c to copy the data and ctl-v to paste it into an editor such as
WordPad.

5

Pub # 2505003 Revision 1.07 13 April 2006

2. DEVICENET CONFIGURAT ION

The CAN interface of the DeviceGate must be configured before the emulator can
communicate. It may or may not have been previously configured when a new browser session
is begun.

The configuration page of the emulator (main.htm) shows the configuration status of the the
DeviceGate and if necessary solicits input from the user.

For this reason, bookmarks should not be used to jump to emulator sub-pages since this could
bypass configuration.

Note: there is no actual file called main.htm because it is constructed as needed by the emulator.

2.1. CAN Configuration Page

If the DeviceGate CAN interface has not been configured, the base URL will present a form
requesting the desired Baud rate, Slave Mac Id, and Master Mac Id. If the DeviceGate has
already been configured, the form will be skipped, and configuration status will be presented.

If the DeviceGate was set up with an IP address of 192.168.200.2, for instance, then the Base
URL would be:

http:// 192.168.200.2/main.htm

Alternatively

http:// 192.168.200.2/

may be used. It is not necessary to include main.htm, since the URL alone will access the base
page.

The baud rate can be 125kb, 250kb or 500kb and must match the baud rate of the DeviceNet
network.

The Id of the device under test is entered as the Slave Id. The default is 63.

An Id should be chosen for emulator that does not conflict with other devices on the network.
A decimal value from 0 to 63 is entered into the Master Id box. The default is 1.

6

Pub # 2505003 Revision 1.07 13 April 2006

2.2. Status Page

This web page will appear after the above configuration step and also in response to the base
URL if the DeviceGate had already been configured.

This page will display the configuration information and present a link to the first page of the
emulator.

7

Pub # 2505003 Revision 1.07 13 April 2006

3. EMULATOR COMMAND BUTTONS

The buttons on an emulator page are used to send page requests and CGI requests to the
emulator where they are converted into DeviceNet messages. The responses to these messages
are received by the emulator and formatted into XML data which is passed back to the
browser. Javascript functions in emu.js are used to interperet and display the XML data.

If a slave device is unable to respond there will be a “No Response” message after a timeout
period.

The following DeviceNet actions are available as command buttons:

3.1. Configure

This command allows re-configuration from the emulator screen. The configuration button opens
a dialog window for entering master id, slave id and baudrate. The Id’s are a decimal number
from 0 to 63.

The Master Id and the Slave Id will be used by the other commands to construct message Id’s.
These may be changed at any time by repeating the configuration command.

3.2. Set Filter

The hardware screener in the CAN controller chip in the DeviceGate can be programmed to
accept certain messages and ignore other traffic on the network.

The mask and match fields in the pop-up window take hexadecimal arguments as their
parameters. The default values are 0xff in all fields, since this leaves the filter open to all
messages.

The fields of each parameter corresponds to the ID bits of the incoming CAN identifier as
follows:

Left Byte

7 6 5 4 3 2 1 0
ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3

8

Pub # 2505003 Revision 1.07 13 April 2006

Right Byte

7 6 5 4 3 2 1 0
ID2 ID1 ID0 RTR * * * *

In constructing a mask place a zero(0) in each position of the eleven bit CAN Identifier field
that is significant for determining whether a message is to be accepted. Place a one
(1) in each position which is a "don't care".

In constructing the match place a zero(0) in each position of the eleven bit CAN Identifier field
that is to be a zero (0). Place a one (1) in each position which is to be a one (1).

Mask & Match Example #1

Suppose that we want to monitor only the poll responses from a particular slave node
(Node 60). We construct the mask condition as follows:

BIT 10 = 0 Group 1 Message
BITS 9-6 = 1111 Poll Response Message ID
BITS 5-0 = 111100 MAC ID 60

mask 00 1F
match 7F 80

All Identifier bits are significant. RTR and the lower unused bits of the mask are set to
“don’t care”.

Mask & Match Example #2

Suppose we want to monitor all Group 3 messages. The mask and match commands
would be as follows:

mask 3F FF
match C0 00

Only bits 10 and 9 of the CAN Identifier field are significant, and they must both be one.

9

Pub # 2505003 Revision 1.07 13 April 2006

3.3. UCMM

The ucmm command toggles an internal variable which selects either the Group 2 predefined
Explicit Request or the Explicit Request created by the UCMM. After both a UCMM
connection (see open) and the predefined Explicit (see allocate) have been created, this toggle
will allow a choice of which method to use.

3.4. Open

The open command takes three decimal parameters, and constructs a UCMM Open Explicit
Request Message. This message is a group 3 message, with a message ID of six(6), and the
Source MAC ID (masterid) The three parameters are the requested body format, the group
select, and the source message id in that order. No error checking is done on the parameters
so many possible combinations will result in error responses or other unexpected conditions.
Valid ranges for each of the three parameters is [0..15]. The data field of the message consists
of the message header, the service code (0x4B), and the three parameters packed into two
bytes. See DeviceNet Specification Vol. I, Rel 2.0, pp. 4-7 to 4-10.

Example

Constructe a UCMM Open, asking for DeviceNet 8/8, on Group 3 with Message ID
two(2).

open 0 3 2 Then press Enter

The resulting message might look like

[781]<3F 4B 00 32>

Example

Construct a UCMM Open asking for DeviceNet 16/16, on Group 1 with Message ID
10

open 2 1 10 Then press Enter

The resulting message might look like

[781]<7F 4B 02 1A>

The open command sets the value of an internal variable called ucmm to the value one(1). It
can be toggled between one(1) and zero(0) with the ucmm command.

10

Pub # 2505003 Revision 1.07 13 April 2006

3.5. Close

The close command takes a decimal parameter which is the instance number of the connection
to close. It constructs a UCMM Close Connection Request which is a group 3 message, with
message ID six(6) and source MAC ID (masterid). The data field consists of the message
header, the service code (0x4C) and the connection instance number. See the DeviceNet
Specification Vol. I, Rel 2.0, pp. 4-17 to 4-19.

Example

Close connection instance #3 on the slave device

close 3 Then press Enter

The resulting message might look like

[781]<3F 4C 03 00>

The internal variable ucmm is set to zero.

3.6. Body Format

The bodyformat command takes a decimal parameter which may be a in the range zero(0) to
three(3). The value is saved in an internal variable; it is then used to construct Explicit Request
Messages in any of the acceptable formats. The following table shows the correspondence
between the values of bodyformat and the format of a corresponding Explicit Request.

Value Meaning
0 DeviceNet(8/8) Class= 8 bits, Instance= 8 bits
1 DeviceNet(8/16) Class= 8 bits, Instance = 16 bits
2 DeviceNet(16/16) Class= 16 bits, Instance = 16 bits
3 DeviceNet(16/8) Class= 16 bits, Instance = 8 bits

3.7. Allocate

11

Pub # 2505003 Revision 1.07 13 April 2006

The allocate command is used to establish one or more of the connections in the Predefined
Master/Slave Connection Set (DeviceNet Specification Vol. I, Rev 1.3, Chapter 7). The single
parameter for the allocate command is a bit mask which is, described in the DeviceNet
Specification Vol. I, Rel 2.0, p5-57, and constructed as follows:

7 6 5 4 3 2 1 0
* NACK CYC COS MLT STB POLL EM

* Reserved (always set to 0)

The following choices will be presented in a dialog window and this will be used construct the
allocation choice parameter:

Cyclic/No Ack CYC + NACK
Cyclic CYC
Change of State/No Ack COS + NACK
Change of State COS
Multicast MLT
Strobe STB
Poll POLL
Explicit EM

To establish the connections between the Master and the Slave, set the Slave's MAC ID with the
configure command to that of the desired Slave device

* Note:
It is not possible to allocate just the I/O Connections without the Explicit Messaging
Connection. It is possible to allocate all connections and then release the Explicit Messaging
Connection.

3.8. Release

The release command informs the Slave that it is no longer under the Master's control. The
parameter to the release is a bit mask, which follows the same format as for the allocate:

7 6 5 4 3 2 1 0
* * CYC COS MLT STB POLL EM

* Reserved (always set to 0)

The following choices will be presented in a dialog window and this will be used construct the
release choice parameter:

12

Pub # 2505003 Revision 1.07 13 April 2006

Cyclic CYC
Change of State COS
Multicast MLT
Strobe STB
Poll POLL
Explicit EM

This command operates the same as the allocate command, for releasing a previously allocated
connection.

3.9. Set EPR

The Set EPR command sets the Expected Packet Rate (EPR) attribute (attribute # 9) of a
connection instance(DeviceNet Specification Vol. I, Rev 1.3, page 5-8). This command takes
two arguments. The first is the connection instance and the second is the EPR value. For the
Predefined Master/Slave connection set, the connection choices are as follows:

Connection
Instance Number

Connection
Type

1 Explicit Messaging
2 Poll Connection
3 Bit-Strobe Connection
4 COS/Cyclic Connection
5 Multicast Connection

The units of the EPR value are milliseconds.

3.10. Reset

The reset command uses class and instance to build an explicit message whose service code
is a reset service (0x05). Not all objects support a reset service, so error responses are to be
expected in many cases. Two DeviceNet objects which typically support the reset service are
the identity object and the connection object. Resetting the identity object will cause the slave
device to execute a DupMac sequence.

3.11. Exit

13

Pub # 2505003 Revision 1.07 13 April 2006

This command causes termination of the emulator application. Once this command is given, it is
necessary to cycle the power on the DeviceGate to restart the application.

This command may be needed if it is desired to connect to the DeviceGate through its FTP
server. While the application is running, the web server will have a higher priority and will block
the FTP server. The FTP server can be used to upload and download customized html pages
and javascript files. (See section 4 on working with the example files).

3.12. Buffer

In addition to the response that is displayed upon execution of a command, all network traffic is
recorded in the buffer of the DeviceGate. This data can be displayed using the “Buffer” button.

The buffer is a circular queue in the DeviceGate and contains the last 500 messages. When it is
full, the oldest messages will be overwritten. A separate button is provided to clear the buffer.

The display will show the message group number, a timestamp in milliseconds, and the message
contents as follows:

The eleven bit CAN identifier, in hexadecimal notation, is enclosed in square brackets. The
message body consists of one or more bytes, in hexadecimal notation, enclosed in angle
brackets. For example a message with the identifier 0x5E4 and two data bytes (0x55 and
0xAA) would be shown as follows:

[5E4]<55 AA>

3.13. Clear Buffer

This button clears the DeviceGate traffic buffer as described above.

3.14. Get

The Get command is used to send a get attribute single service to the slave device over the
explicit messaging connection. In the dialog for this command, the user enters Class in Hex,
Instance in decimal and Attribute in decimal.

This command uses the slaveid and masterid that were set during configuration to construct the
message. The request will issue a get single attribute command to the Slave device and display
the results.

14

Pub # 2505003 Revision 1.07 13 April 2006

If the result is longer than 8 bytes, the data will be returned using fragmentation protocol. The
display will wait until all of the fragments have been received. The data will be displayed as if in
one continuous message (that is, the display is not limited to 8 bytes). The details of the actual
transaction showing all fragments and frag acks will be recorded in the DeviceGate buffer,
which can re read with the monitor command.

3.15. Get Next

The values of class, instance and attribute are javascript variables that record the last values
used. The “get next” button is a short cut to get the next attribute of the current class and
instance. The values of these variables will be reset to 1,1,1 when the current page is refreshed
or when switching to one of the other pages.

3.16. Set

This command allows the user to send “set attribute single” commands by entering Class in
hexadecimal, Instance in decimal, Attribute in decimal and Data in hexadecimal. The form
provides space for 8 data bytes, however if more than two bytes are entered, the message will
be sent using fragmentation. The display window will display the last packet sent and its
response. The complete fragmentation & acknowledge sequence can be viewed with the
monitor command.

3.17. Bit Strobe

The strobe command [Group2, Source Mac Id, MsgId 0] sends one bit of output data to
each allocated slave, using the Master's Bit Strobe Command Message. The message
length would be eight bytes and each allocated slave on the network is assigned one bit
out of the sixty-four, corresponding to its MAC address, to be used as it wishes. Each
allocated slave receiving a bit strobe from its master will produce a bit strobe response.
Master Emulator also supports the use of the zero length strobe. In this case, just the
command with no data is required.

Example #1

Send a strobe bit of 1 to device 60 and zero to the rest.

strobe 0 0 0 0 0 0 0 10 Then press Enter.

15

Pub # 2505003 Revision 1.07 13 April 2006

To send a zero length strobe to the slaves allocated to the Master Emulator, press Enter without
entering data.

3.18. Poll

The poll command is used to send packets of data to the slave device using the Master's Poll
command [Group2, Destination Mac Id, MsgId 5]. The Poll command may send up to eight
bytes non-fragmented to the destination slave device.

A zero length poll can be sent to the slave device by entering no data.

3.19. MultiCast Poll

The MultiCast command is used to broadcast packets of data to slave devices using the
Master's Poll command [Group2, Destination Mac Id, MsgId 1]. The MultiCast specification
allows any amount of data to be broadcast. The emulator function in this application allows up
to eight bytes non-fragmented.

3.20. Build Message

DeviceNet messages can be built by entering valules into a form to create the eleven bit ID and
up to eight bytes of data. The information is entered in hexadecimal. A table of message group
ID formats is presented as a guide in the pop-up dialog window. This shows which bits of the
ID represent group number, message number and MAC ID, since these vary for each message
group.

group 1: 0 Msg Id MAC Id
group 2: 1 0 MAC Id Msg Id
group 3: 1 1 Msg Id MAC Id
group 4: 1 1 1 1 1 Msg Id
ID bits: 11 10 09 08 07 06 05 04 03 02 01

ID (hex): 0-7 0-F 0-F

16

Pub # 2505003 Revision 1.07 13 April 2006

17

Pub # 2505003 Revision 1.07 13 April 2006

4. CUSTOM COMMANDS

The third HTML page of the emulator application illustrates how the user might compose
javascript functions and reference them with HTML in order to create customized command
buttons.

The files example.htm and example.js may be downloaded from the DeviceGate and used as
templates for additional pages of command buttons. The new pages can be uploaded back to
DeviceGate and made accessible by way of the navigation buttons.

Any FTP program may be used to upload and download from the DeviceGate. FTP can be
accessed from DOS by typing FTP. Tyoing ‘help’ will show the available commands.

Type Open followed by the IP address of the DeviceGate. Then for user name and password
enter ‘ftp’. Now the dir command will list the files on DeviceGate. Put ‘filename.ext’ is used to
upload a file and Get ‘filename.ext’ will download a file.

There is about 230k of file storage space of which about 60k is used by application files.

It will be necessary to exit from the application before using the FTP connection, and to cycle
the power to restart the application. See section 3.11.

4.1. Request/Response

When a button is clicked, a javascript function is called. Most custom commands will use the
doRequest function in emu.js. This provides the means for passing parameters to the emulator
and receiving an XML document as the response. Data is extracted by this same function call
into a global variable named response which can be displayed with the showIt() function.

A simple command function will have the form:

function name()
{
 doRequest(url);
 showIt();
}

where name is your function name and url is a string representing the url of the desired emulator
webpage (see below).

18

Pub # 2505003 Revision 1.07 13 April 2006

4.2. Emulator URLs

The DeviceNet data availble via custom commands will be accessed by linking to two different
URLs in the emulator. One of these responds with data from the emulator buffer. The other
URL accepts cgi parameters as input from the user and responds with the resulting message.

If the DeviceGate had an IP address of 192.168.200.2, for instance, then the Buffer url would
be:

http:// 192.168.200.2/buf

and this is the cgi request url:

http:// 192.168.200.2/req

Emulator requests containing parameters use CGI syntax in which the ampersand (&) seperates
the parameters:

http:// 192.168.200.2/req?f=9&c=1&i=1&a=7

If one of these urls is typed into the navigation bar of your browser, the emulator will respond
with XML data. The browser does not know how to interperet the XML without javascript.
The doRequest javascript function knows how to parse the XML and decode the data.

The doRequest function does not require the full url since it is local to the DeviceGate.

Buffer data is obtained as follows:

 doRequest(“buf”);

An emulator request function would be called this way:

 doRequest(“req?f=9&c=1&i=1&a=7”);

4.3. Emulator Request Functions

19

Pub # 2505003 Revision 1.07 13 April 2006

In this section and the next, the word “function” has two different contexts. This section refers to
the various actions that can be accessed through the CGI request web page. The first parameter
in the CGI url is the function number.

The section on javascript functions refers to the code that appears in script.js, user.js and any
other script file that might be used.

As noted in the preceding section, “req” is the URL of the page that handles CGI requets. The
question mark (?) is the start of a CGI parameter list. Each element of the list is seperated by
the ampersand (&). The character before the equal sign (=) is an arbitrary parameter name.
(The emulator web server doesn’t care what characters are used for parameter names. For
each function, the order of the parameters determines their meaning.) The number following the
equal sign (=) is the parameter value.

The first parameter in the list is the emulator function number. For example, f=9 is a Get
Attribute Single request.

 Each emulator function requires a specific parameter list. For instance, given f=9, class = 1,
instance = 1, and attribute = 6 the emulator will request a serial number, the 6th attribute of the
identity object, from the slave device.

Here are the emulator functions and their required parameters:

DeviceGate Configuration *
Function number 1 See section 3.1
Parameter 1 0-63 Master MAC Id (decimal)
Parameter 2 0-63 Slave MAC Id (decimal)
Parameter 3 125, 250, 500 Baud rate (kb)

* This function sets the Mac Id variables in the emulator that are used to build message id’s. It
also programs the CAN interface with the baud rate.

Set Expected Packet Rate
Function number 2 See section 3.9
Parameter 1 1-5 Connection instance
Parameter 2 * 0-32767 Milliseconds (decimal)

* If Parameter 2 is omitted, the epr will be set to 0. This will prevent a connection from timing
out.

20

Pub # 2505003 Revision 1.07 13 April 2006

Change MAC Id’s *
Function number 3 See section 3.1
Parameter 1 0-63 Master MAC Id (decimal)
Parameter 2 0-63 Slave MAC Id (decimal)

* This is similar to function 1, except that the CAN interface is not effected.

 Open
Function number 4 See section 3.4
Parameter 1 0-3 Body format
Parameter 2 1-4 Group number
Parameter 3 0-15 Source message ID

 Close
Function number 5 See section 3.5
Parameter 1 1-5 Connection instance

 Allocate Connection
Function number 6 See section 3.7
Parameter 1 1-5 Connection (See section 3.9)
Parameter 2 Selection bits Choices

 Release Connection
Function number 7 See section 3.8
Parameter 1 1-5 Connection (See section 3.9)
Parameter 2 Selection bits Choices

Reset
Function number 8 See section 3.10
Parameter 1 Class hexadecimal
Parameter 2 Instance hexadecimal

Get Attribute Single *
Function number 9 See section 3.14
Parameter 1 Class hexadecimal
Parameter 2 Instance hexadecimal

21

Pub # 2505003 Revision 1.07 13 April 2006

Parameter 3 Attribute hexadecimal

* If a response to an explicit is sent as a fragmented message the its contents will be displayed
as a single string after all fragements have been received and acknowledged. The individual
fragemented packets and their Acks can be viewed in the buffer.

Set Attribute Single
Function number 10 See section 3.16
Parameter 1 Class hexadecimal
Parameter 2 Instance hexadecimal
Parameter 3 Attribute hexadecimal
Parameter 4, 5, etc. * Value hexadecimal

* Function 8 will accept up to 80 bytes of data and produce a fragmented explicit message. The
displayed response will only show the last packet sent and its response. The individual
fragemented packets and their Acks can be viewed in the buffer.

Poll (or Master’s Change of State)
Function number 11 See section 3.18
Parameter 1 Output Data Up to 8 bytes hexadecimal

Build Message
Function number 12 See section 3.20
Parameter 1 0-7 (hexadecimal) ID 1
Parameter 2 0-f (hexadecimal) ID 2
Parameter 3 0-f (hexadecimal) ID 3
Parameter 4 - 11 Up to 8 bytes (hexadecimal) Message Body

Set Mask and Match Filter
Function number 13 See section 3.2
Parameter 1 Mask1 hexadecimal
Parameter 2 Mask2 hexadecimal
Parameter 3 Match1 hexadecimal
Parameter 4 Match2 hexadecimal

22

Pub # 2505003 Revision 1.07 13 April 2006

 Quit
Function number 14 See Section 3.11

 UCMM
Function number 15 See Section 3.3

 Clear Buffer
Function number 16 See Section 3.13

 Multicast Poll
Function number 17 See Section 3.19
Parameter 1 thru 8 Data

 Bit Strobe
Function number 18 See Section 3.17
Parameter 1 thru 8 Data

 Body Format
Function number 19 See Section 3.6
Parameter 1 0-3 format

The next two functions are available but have no corresponding buttons in the web
page display. See section 5.4 for more detail on using functions without the emulator
javascript.

 Serial Send
Function number 20 Uses Ext port at 9600 baud (8-

odd-1)
Parameter 1 thru 10 ASCII (hex) Send up to 10 bytes

Example:

 http://
192.168.200.2/req?f=20&d=48&d=65&d=6c&d=6c&d=6f

23

Pub # 2505003 Revision 1.07 13 April 2006

This sends the string “Hello” on the serial (EXT) port of the DN-E100. An XML response will
be returned to the browser:

 <?xml version="1.0" ?>
- <HNW>

- <MSG>
 <QID>000</QID>
 <QLN>05</QLN>
 <QMB>48 65 6c 6c 6f</QMB>
 <RID>000</RID>
 <RLN>00</RLN>
 <RMB />
 <TXT>Serial Message Sent</TXT>

 </MSG>
 </HNW>

 Serial Recieve
Function number 21 Uses Ext port at 9600 baud (8-

odd-1)
Parameter 1 Length (1 byte hex) 0 to ff (# of bytes to recieve)

Example:

 http:// 192.168.200.2/req?f=21&L=ff

This reads up to 255 characters from the serial port receive buffer. The results are sent back as
XML. If the characters “1234567890” had previously been typed on a terminal emulator
connected to the serial port then the result would be:

 <?xml version="1.0" ?>
- <HNW>

- <MSG>
 <QID>000</QID>
 <QLN>00</QLN>
 <QMB />
 <RID>000</RID>
 <RLN>10</RLN>
 <RMB>31 32 33 34 35 36 37 38 39 30</RMB>
 <TXT>Serial Message Rcvd</TXT>

 </MSG>
 </HNW>

24

Pub # 2505003 Revision 1.07 13 April 2006

4.4. Javascript Functions

Request urls derived from the above tables can be assigned to variables which are then used as
follows:

To get the serial number of the slave device:

var SerNum = "req?f=9&c=1&i=1&a=6";

function getSerNum()
{
 doRequest(SerNum);
 showIt();
}

4.5. Multiple Responses

Multiple calls to doRequest can be made in a single javascript function, and each will return a
response string that is displayed in the results window. If the showIt function is used to display
the results, only the last one will be visible, since showIt closes the window after displaying each
response.

To show the results of a series of requests without overwriting previous responses, the window
can be left open until all results have been displayed.

For instance, to allocate an explicit connection and an IO connection and then set the IO
connection expected packet rate to 500 mSec:

var allocate3 = "req?f=6&c=3";

var setEpr2 = "req?f=2&c=2&t=500";

function allocateDevice()
{
 doRequest(allocate3);
 window.frames[0].document.open();
 window.frames[0].document.write(response);

 doRequest(setEpr2);
 window.frames[0].document.write(response);

25

Pub # 2505003 Revision 1.07 13 April 2006

 window.frames[0].document.close();
}

Note: The global variable response is a string that contains the results of parsing the XML
response data.

4.6. Command buttons and Navigation buttons

Javascript functions can be linked to buttons on the command panel with HTML code as
follows:

<INPUT TYPE="button" VALUE="Serial#"
onclick="getSerNum()">

The navigation buttons at the bottom of each page can be used to add pages for new command
panels:

<INPUT CLASS=NAV TYPE="button" VALUE="Next > " onclick =
"page2()" >

where page2() is a javascript function as follows:

function page2()
{
 window.location = "emu2.htm";
}

26

Pub # 2505003 Revision 1.07 13 April 2006

5. APPLICATION HINTS

5.1. Allocating Connections

To debug various kinds of messages and objects on a slave device it is necessary to establish at
least an Explicit Messaging Connection and possibly IO connections. Each connection is
associated with an expected packet rate (EPR) which causes it to time out after four (4) times
the EPR has elapsed with no message. It is useful to set the explicit connection EPR to zero
when doing manual tests, so that it will not time out.

This can be accomplished with the Allocate and Set EPR command buttons on the first page.
This could also be done with a custom command button that does multiple emulator requests to
set up one or more connections at the same time.

Here is an example:

var allocate3 = "req?f=6&c=3"; //selects IO and
explicit
var setEpr1 = "req?f=2&c=1"; // Explicit epr = 0
var setEpr2 = "req?f=2&c=2"; // IO epr = 0

function StartCnxn()
{
 doRequest(allocate3);
 window.frames[0].document.open();
 window.frames[0].document.write(response);

 doRequest(setEpr1);
 window.frames[0].document.write(response);

 doRequest(setEpr2);
 window.frames[0].document.write(response);
 window.frames[0].document.close();
}

5.2. Simple Scanner

A simple scanner (MACID = 1) with two slave devices (MACIDs 52 and 54) can be
implemented with one command button definition and two javascript functions.

The first function establishes the slave connections and then sets a time interval in milliseconds at
which the second function will be executed. The first function is linked to the command button.

27

Pub # 2505003 Revision 1.07 13 April 2006

The scan function will run automatically at one second intervals until the active html page is
refreshed from the browser tool bar or changed with navigation buttons.

var slave52 = "req?f=3&m=1&s=52";
var slave54 = "req?f=3&m=1&s=54";
var PollOff = "req?f=11&d=0";
var PollOn = "req?f=11&d=1";

function startScan()
{
 doRequest(slave52);
 doRequest(allocate3);
 doRequest(setEpr1);
 doRequest(setEpr2);

 doRequest(slave54);
 doRequest(allocate3);
 doRequest(setEpr1);
 doRequest(setEpr2);

 setInterval("scan()", 1000);
}

function scan()
{
 doRequest(slave52)

doRequest(PollOff);
 doRequest(slave54);
 doRequest(PollOn);
}

5.3. Help Text

It may be useful to use command buttons to provide instructions or prompts to the user:

function help()
{

var helptext = "<P>This button demonstrates a”;
helptext += “function for writing help text into”;
helptext += “ the display window.";

 helptext += "<P>This is another paragraph”;

28

Pub # 2505003 Revision 1.07 13 April 2006

 window.frames[0].document.open();
 window.frames[0].document.write(helptext);
 window.frames[0].document.close();
}

The example shows that strings written to the display window can contain HTML tags as seen
above with the <P> tag seperating paragraphs.

The help function can be linked to a button with this HTML code:

<INPUT TYPE="button" VALUE=" HELP " onclick="help()">

5.4. Accessing functions without the emulator javascript

You may wish to access emulator functions with your own programs. Functions can be called
directly through a url. As an example, here is the url for the “Build Message” function to send a
poll with 2 bytes of data:

http://192.168.1.32/req?f=12&i1=5&i2=f&i3=d&d1=0&d2=1

This calls function number 12 and provides a CAN id of 5fd with two bytes of data, 00 and 01.

The response will be returned in XML:

<?xml version="1.0" ?>
- <HNW>

- <MSG>
 <QID>5fd</QID>
 <QLN>02</QLN>
 <QMB>00 01 </QMB>
 <RID>3ff</RID>
 <RLN>01</RLN>
 <RMB>00</RMB>
 <TXT>IO Message</TXT>

 </MSG>
 </HNW>

QID is the query id
QLN is the query length
QMB is the query data

RID is the response id
RLN is the response length
RMB is the response message

29

Pub # 2505003 Revision 1.07 13 April 2006

TXT identifies the response type

30

Pub # 2505003 Revision 1.07 13 April 2006

6. APPENDIX: IP ADDRESS SETUP

This appendix describes how to determine an IP address to use for your DeviceGate. First
there is an explanation of IP addresses and subnet masks. Then, several possible configurations
are considered.

1. Connection through a hub to a network with a DHCP server.
2. Connection through a hub to a network with no DHCP server.
3. Connection to a PC ethernet adapter via cross-over cable with only one ethernet

adapter in the PC.
4. Connection to a PC ethernet adapter via cross-over cable when the PC is also

connected to a network through a seperate ethernet adapter.

6.1. IP addresses and subnet masks

An IP address consists of four 8-bit fields (octets). An IP address can specify a whole network
and it can also specify a node on a specific network.

The DeviceGate will have an IP node address and any PC that communicates with it will have
an ethernet adapter with a different IP node address. The two addresses must be on the same
network or sub-network. The following will help to determine your network address and the
range of possible node addresses for that network.

6.1.1. Reserved Addresses

There are a couple of octet values that are reserved and must not be used as part of a node
address.

o An octet must not be set to zero in a node address, since zero is reserved for network
addresses. For instance, 192.168.10.23 could be a node on network 192.168.10.0.

o The top address of a network or subnetwork is the value in which all bits are set to one.

This is reserved for broadcast messages and should not be used as a node address. If
someone sent a message to 192.168.10.255 on the network 192.168.10.0, it would be
seen by all nodes on the network.

31

Pub # 2505003 Revision 1.07 13 April 2006

6.1.2. Masks

Subnet Masks are used to identify the network and node sections of an IP address. To find the
network address of an adapter do a bitwise AND with the node address and the subnet mask.
For instance:

IP=192.168.10.23 11000000.10101000. 00001010.00010111
Mask=255.255.255.0 11111111.11111111.11111111.00000000

Net=192.168.10.0 11000000.10101000.00001010.00000000

This shows that the right hand octet is the node address portion. Excluding 0 and 255, the node
addresses can range from 1 through 254.

In this example it wasn’t really necessary to resort to binary calculations because the mask fell
neatly on octet boundaries making it possible to simply read the net address from the top three
octets. Sometimes it is less obvious.

6.1.3. Subnets

Subnet masks allow subdividing networks into various sizes, not restricted to simple octet
boundaries as described above. Take this example:

172.16.0.0 is a network with 65,534 possible nodes (2^16 addressese minus the two reserved
values 172.16.0.0 and 172.16.255.255).

This network can be divided into 16 subnets with 254 possible nodes in each by using a subnet
mask of 255.255.240.0. 240 is 11110000 binary. This allows 4 bits for specifying 16 different
subnets.

Here is an example of identifying the subnet of a node on this network:

IP=172.16.127.1 10101100.00010000.01111111.00000001
Mask=255.255.240.0 11111111.11111111.11110000.00000000

Subnet=172.16.112.0 10101100.00010000.01110000.00000000

Subnet 172.16.112.0 has nodes from 176.16.112.1 through 172.16.127.254. It is one of 16
subnets on the network 176.16.0.0.

32

Pub # 2505003 Revision 1.07 13 April 2006

6.2. Connection through a hub to a network with a DHCP
server

This is perhaps the easiest to set up because you don’t have to choose the IP address yourself,
but it is not very practical because the DHCP server can re-assign the address at any time. This
means that your DeviceGate URL could change without notice and you would have to use
DGtools to re-discover it. However, we include the description of this case for completeness.

If your network uses a DHCP server, Network Neighborhood Properties will show that the
TCP/IP configuration for your etherlink card is set to obtain an ip address automatically.

Use a straight ethernet cable rather than a cross-over cable between a hub and the DeviceGate.
Use the Device Configuration dialog box in DGtools to set DHCP “on” and ignore the other
configuration settings. When you power cycle the DeviceGate, the DHCP server should
automatically assign an IP address.

Use DGtools to do a “discover”. This will show you the address that was assigned to
DeviceGate. Now you can use that address as the URL in your browser.

6.3. Connection through a hub to a network with no DHCP
server

In this case, your system administrator is coordinating the allocation of available IP addresses.
You will have to use a unique address that is not being used by any other node on the network.
You will also need to know the correct net mask to use. In the configuration dialog window of
DGtools, DHCP is set to “off”. Fill in the IP address and the net mask. The gateway field can
be ignored since it is not being used.

Cycle the power to DeviceGate and use DGtools to do a “discover”. This will show you the
new address of the DeviceGate. Use that address as the URL in your browser.

6.4. Connection to a PC ethernet adapter via cross-over
cable with only one ethernet adapter in the PC

In this case you need two IP addresses on the same network, one for the ethernet adapter card
in the PC and one for the DeviceGate. To find the setup of your adapter card, go to the “Start”
menu and use the Run command. Enter “winipcfg”. Open the drop down window in “IP
Configuration” and select the ethernet adapter. Write down the IP address and the subnet

33

Pub # 2505003 Revision 1.07 13 April 2006

mask. Refer to the above explanation for how to determine the address of the network. Choose
a different IP address in the same network space. Be sure not to choose the reserved values
(see above).

Use DGtools to configure the IP address that you have chosen and the same subnet mask as
your adapter card. Ignore the gateway address. Leave DHCP set to “off”.

Cycle the power to DeviceGate and use DGtools to do a “discover”. This will show you the
address that was assigned to DeviceGate. Now you can use that address as the URL in your
browser.

6.5. Connection to a PC ethernet adapter via cross-over
cable when the PC is also connected to a network
through a separate ethernet adapter

First you will need to determine the network address of you existing network. Go to the “Start”
menu and use the Run command. Enter “winipcfg”. Open the drop down window in “IP
Configuration” and select the ethernet adapter. Write down the IP address and the subnet
mask. Refer to the above explanation for how to determine the network address that you are
on.

The Network address of the point-to-point connection (the DeviceGate), will have to be
different than the existing network address. Then, just pick two node addresses for the point-
to-point network. Remember to avoid the first and last addresses on that network (the ones
reserved for the whole network and for broadcast messages). One of these addresses is
assigned to the adapter card.

