
User’s Guide

DeviceNet
Master Emulator

DN-MEM
Rev. 1.12

771 Airport Boulevard, Suite 2, Ann Arbor, Michigan 48108 Phone: (313) 995-2637 Fax: (313) 995-2876

H URON
N ET
W ORKS

Pub # 2200002 Revision 1.4 1 July 1998

2

Pub # 2200002 Revision 1.4 1 July 1998

1. GETTING STARTED

1.1. General Description

The Master Emulator Software is a general purpose tool used in the development and
debugging of DeviceNet nodes. It has the ability to monitor the DeviceNet bus for traffic.
It displays incoming messages on the screen and optionally logs them to a file for later
analysis. It provides a general purpose message construction feature which can be used to
send specific messages to a DeviceNet node under development. Certain DeviceNet
operations from the predefined Master/Slave Connection Set and the UCMM have their
own keywords defined so that the exact format of common messages need not be committed
to memory. Sequences of messages and commands may be assigned to any of the twelve
function keys and manually executed when the function key is depressed. In order to run
automated test suites there is a script file capability. The script file may contain a replay
command (Sec 2.6) to allow continuous testing. The script file may also contain a play, or
a chain command which allows multiple files to be treated as a single file.

1.2. Installation

Copy the contents of the diskette onto the hard drive in any convenient sub-directory.
There are two executable files -- DMEM.EXE, and DMEM286.EXE. Use DMEM.EXE on
a 386 or higher machine, use DMEM286.EXE on a 286 or higher machine. There are
several other files included as example scripts (*.scr) and function key definitions (*.key).

The Master Emulator is design to be used with the DN-PC1, DeviceNet PC Interface
Card. Refer to the board manual for proper installation of the hardware. The DIP
Switches will select a board address and an interrupt level. The board may be set at
address 0x200, 0x280, 0x300, or 0x380, and the IRQ must be set for one of the following
interrupt levels 3, 4, 5, 7, 10, 11, 12, or 15. The software defaults are as follows:

Board Address = 0x300
IRQ = IRQ5

The Master Emulator Software has three optional parameters which can be specified on the
command line. These are board address, interrupt level, and baudrate. They may be
specified in any order since only the values are significant. If a parameter is not specified
on the command line it takes a default value. The default for baudrate is 0 which causes
the CAN chip initialization to be skipped. Without a valid baudrate specification, the
initialization of the CAN chip could disrupt a network on which there was traffic present.

3

Pub # 2200002 Revision 1.4 1 July 1998

Baudrate can be conveniently specified as a command line parameter, or from the keyboard
via the baudrate command (see section 2.15), or in the autoexec.scr script file (see
section 2.5). Valid baudrates are 125, 250, and 500.

For example if the DN-PC1 is located at address 0x280 and uses interrupt level 10 and the
baudrate is to be 250 Kbaud, then enter the following:

C:\DMEM>DMEM 280 10 250 or
C:\DMEM>DMEM 250 10 280 or
C:\DMEM>DMEM 10 280 250

Master Emulator does not care about the order of the three arguments: only the values.

After being loaded, Master Emulator will look for a file named autoexec.scr. If the file
exists, the file will automatically be played (See Section 2.5).

To exit the Master Emulator use ^X. Hold the control key (Ctrl) and press the letter X.

1.3. Screen Layout

The screen is divided into four colored sections called Banner, Traffic, Command, and
Help. The Banner Section is two lines of red text on a light gray background. The
software version and compilation date are shown here. The Help Section at the bottom of
the screen is a single line of red text on a light gray background. The Help Section
displays the board address, the interrupt level, the baudrate, the state of the DeviceNet bus
power supply, and a prompt indicating that Control-x will exit the program.

The remainder of the screen is divided into two halves. The top half of the screen, with the
black text on a cyan background, is the Traffic Section which monitors incoming traffic.
The bottom half of the screen, with the yellow text on a blue background, is the Command
Section, which is used for entering commands and outgoing messages. Actual messages,
sent on the DeviceNet wire, are shown in blue text on a green background. This color
scheme is also used to display a directory of filenames. (See the load, play, and chain
commands in Sections 2.2, 2.5 and 2.23).

In the traffic section all of the received messages are shown in hexadecimal form with the
CAN identifier enclosed in square brackets -- [] -- and the CAN data field enclosed in
angle brackets -- < > --. Where possible a textual description of the message is given on
the same line.

1.4. Program Input

Input to the program comes from one of three sources. These sources are:

4

Pub # 2200002 Revision 1.4 1 July 1998

• Keyboard
• Function Key Buffer
• Script File

The input from any of the three sources consists of either messages, commands, or
comments. Commands consist of a keyword and an optional list of parameters separated
by one or more spaces. A comment is any line beginning with a pound sign(#), a colon(:),
a space (" ") or a newline(\n). DeviceNet messages consisting of an identifier and a
message body are represented with the following syntax:

[identifier]<xx xx xx>

The eleven (11) bit CAN identifier, in hexadecimal notation, is enclosed in square
brackets. The message body consists of one or more bytes, in hexadecimal notation,
enclosed in angle brackets. Spaces used between message bytes to improve readability are
optional. For example a message with the identifier 0x5E4 and two data bytes (0x55 and
0xAA) would be written as follows:

[5E4]<55 AA>

If more than eight bytes are specified in the message body then the message will be sent out
as an explicit fragmented message. In this case the first and second bytes of the message
should conform to the DeviceNet fragmentation protocol. The first byte should have the
fragmentation bit set and the second byte should be 0 to indicate the first fragment. In all
other cases when using this form of message construction, there is no error checking or
other protocol related activity on the part of the Master Emulator.

1.5. Explicit Message Types

An explicit message can be constructed in two different ways. The first method uses the
Predefined Master/Slave Connection Set. These explicit messages have an identifier in
Group 2, message Id four(4), and destination Mac Id. The message header in the data field
contains the value of the Master Mac Id. the second method uses the UCMM to allocate an
identifier. This identifier will have the Master Mac Id in it. The Slave Mac Id is placed in
the message header byte in the data field.

1.6. Message Body Format

Message Body Format is related to the sizes of Class Identifier and Instance Identifier,
used in the construction of explicit messages. The DeviceNet specification defines four
choices for how to handle this value. See Vol. I, Chapter 4, page 4-7 of the DeviceNet
Specification.

5

Pub # 2200002 Revision 1.4 1 July 1998

6

Pub # 2200002 Revision 1.4 1 July 1998

2. COMMANDS

Chapter Preview

2.1 help 2.12 release 2.23 chain
2.2 load 2.13 slaveid 2.24 mask
2.3 save 2.14 masterid 2.25 match
2.4 log 2.15 baudrate 2.26 reset
2.5 play 2.16 fragackid 2.27 cosack
2.6 replay 2.17 fragokid 2.28 open
2.7 delay 2.18 message 2.29 close
2.8 allocate 2.19 class 2.30 bodyformat
2.9 setepr 2.20 instance 2.31 ucmm
2.10 poll 2.21 get
2.11 strobe 2.22 set

2.1. help

The help command causes a list of commands to be displayed. The list is displayed one
page at a time. Depressing any key causes the next page to appear.

2.2. load

The load command, a space and a filename causes a file of previously saved Function Key
Definitions, to be loaded into the function key buffers. For example to load key definitions
from the file "startup.key" enter the following:

load startup.key Then press Enter.

If the filename parameter to the load command does not have a filename extension then the
extension “.key” will be appended to the name. Master Emulator will try to open the file,
load the key buffers and print a message saying how many key buffers it loaded. If the file
cannot be found a message will be displayed.

To obtain a list of function key definition files, type load, without a filename, then, press
enter. The display will change to a green background with blue text. The text will consist
of a list of *.key files from the directory in which Master Emulator is currently being run.
Press any key to return to the command screen.

7

Pub # 2200002 Revision 1.4 1 July 1998

2.3. save

The save command is the opposite of the load command. It saves the current definitions
for the Function Keys into a file. For example to save the Function Key Definitions to a
file called "newfuncs.key" type the following:

save newfuncs.key Then press Enter.

As with the load command, if no extension is provided for the filename parameter then an
extension of “.key” will be appended. Master Emulator will open the file and save all the
Function Key Definitions and display a message saying how many definitions it saved.
Note that the definition files are saved in ASCII text format and may be viewed and
manipulated with standard word processors and editors. The syntax is trivial and will not
be further explained in this manual.

2.4. log

The log command has two optional parameters. The first is a filename and the second is an
access control. A filename without an extension will have the extension “.log” appended.
If no file name is specified then logging is turned off. If a filename is specified then any
active logfile is closed and a new one is opened. The access control can be either the
letter ‘a’ or the letter ‘w’. If the specified filename exists, then the ‘a’ or ‘w’ tells Master
Emulator whether to append (‘a’) new information to the end of the existing file, or to
overwrite (‘w’) the old data. If the access control parameter is not specified then ‘a’ for
append is the default.

In operation, the logfile records all commands going out and all traffic coming in. For
example to start logging to a file called test1.log use the following command:

log test1.log Then press Enter.

Typing log again without the filename will cause test1.log to be closed, and a message
printed saying logging has been turned off.

In the logfile all incoming packets begin with a colon(:) which is interpreted as a comment.
This allows a logfile to be "played"(See Section 2.5)

2.5. play

The play command takes a filename as a parameter. If the filename has no extension then
the extension “.scr” is appended. It runs the file as a script, exactly as if it had been
entered from the keyboard. In DMEM version 1.09 and greater, the functionality of this

8

Pub # 2200002 Revision 1.4 1 July 1998

command has been extended. The original functionality of this command is retained in the
chain command (section 2.23). Up to eleven open “play” files will be maintained on a
stack. If a play file contains a play command then input will come from the new file and
will return to the original file when end of file is reached. For example to play a file
called "count.scr", type the following command:

play count.scr Then press Enter.

The file "count.scr" will be opened, read and interpreted exactly as if the characters had
been entered from the keyboard. When the end of file is reached input will return to the
keyboard. If a file is to be played continuously then use a replay command (section 2.6)
with no parameter as the last line of the file.

To obtain a list of script files, use a play command without a filename. Then, press enter.
The display will change to a green background with blue text. The text will consist of a
list of *.scr files from the directory in which Master Emulator is currently being run. Press
any key to return to the command screen.

When input is being taken from a script file, the dollar sign($) character may be used as a
temporary keyboard escape. All keyboard input up to the next return will go in place of the
dollar sign in the currently executing script file. This may be used for example to program
unique vendor serial numbers into a DeviceNet node. A canned sequence of steps may be
placed in a script file to “unlock” the change serial number mechanism. At a strategic
point the dollar sign($) could be placed in the script file, and the serial number could be
entered. See section 4.4 for an example.

2.6. replay

The replay command takes an optional decimal parameter which specifies the number of
times the file is to be read from the beginning. If the parameter is missing it causes the file
that is being read to loop continuously until the process is aborted by pressing any key.
The replay command must be placed at the end of the actual test script itself. Here is a
short example test script using the replay command:

poll 01 00
delay 100
poll 02 00
delay 50
strobe 0 1 2 3 4 5 6 7
replay

In order for this script to produce a response, the three predefined connections on one of
the slave devices on the network must have been allocated. See section 2.8.

If the example above should be performed ten times then the file would appear as follows:

9

Pub # 2200002 Revision 1.4 1 July 1998

poll 01 00
delay 100
poll 02 00
delay 50
strobe 0 1 2 3 4 5 6 7
replay 10

2.7. delay

The delay command adds a delay in milliseconds when inserted into a sequence of
commands. For example to insert a delay of 150 milliseconds type the following:

delay 150 Then press Enter.

See the example program in Section 2.6.

Small delays on the order of several milliseconds may not be timed with extreme accuracy,
due to the processing delay of the script file interpretation.

2.8. allocate

The allocate command is used to establish one or more of the connections in the
Predefined Master/Slave Connection Set (DeviceNet Specification Vol. I, Rev 1.3,
Chapter 7). The single parameter for the allocate command is a hexadecimal encoded bit
mask which is, described in the DeviceNet Specification Vol. I, Rel 2.0, p5-57, and
constructed as follows:

7 6 5 4 3 2 1 0
* NACK CYC COS * STB POLL EM

NACK Acknowledge Suppression
CYC Cyclic Connection
COS Change of State Connection
STB Bit Strobe Connection
POLL Poll Connection
EM Explicit Message Connection
* Reserved - should always be set to zero (0).

The available connections are an Explicit Messaging Connection, a Poll Connection, a Bit-
Strobe Connection, and a Change of State/Cyclic Connection. To establish the connections
between the Master and the Slave, set the Slave's MAC ID with the slaveid command to
that of the desired Slave device. For example to open the various connections with device
number 62 use the following sequence of commands:

10

Pub # 2200002 Revision 1.4 1 July 1998

slaveid 62 Then press Enter
allocate 1 To open an Explicit Messaging Connection

OR
allocate 3 To open an Explicit Messaging and Poll Connection

OR
allocate 7 To open an Explicit Messaging, a Poll, and, a Strobe

Connection

* Note:
It is not possible to allocate just the I/O Connections without the Explicit Messaging
Connection. It is possible to allocate all connections and then release the Explicit
Messaging Connection.

2.9. setepr

The setepr command sets the Expected Packet Rate (EPR) attribute (attribute # 9) of a
connection instance(DeviceNet Specification Vol. I, Rev 1.3, page 5-8). This command
takes two decimal arguments. The first is the connection instance and the second is the
EPR value. The units of the EPR value are milliseconds. For the Predefined Master/Slave
connection set, the connection identifiers are as follows:

Connection
Instance Number

Connection
Type

1 Explicit Messaging
2 Poll Connection
3 Bit-Strobe Connection
4 COS/Cyclic Connection

To set the EPR of the explicit messaging connection to 0 use the following:

setepr 1 0 Then press Enter.

To set the EPR of the poll connection to 100(milliseconds), use the following:

setepr 2 100 Then press Enter.

Setting the EPR of other Connection Instances is possible depending on Slave's
implementation.

2.10. poll

The poll command is used to send packets of data to the slave device using the Master's
Poll command [Group2, Destination Mac Id, MsgId 5]. The Poll command may send up to

11

Pub # 2200002 Revision 1.4 1 July 1998

eight bytes non-fragmented to the destination slave device. For example to send the data
bytes 0x55 and 0xE7 to a slave device type the following command:

poll 55 E7 Then press Enter.

See Section 2.6 for an example program.

In the present version of DMEM there is no support for fragmented IO messages. This is
due to the requirement that produced and consumed connection sizes are required on both
ends of an I/O connection to determine whether or not a message is being fragmented.
Since DMEM does not implement a full connection manager, which would interfere with
its use as a development tool, fragmented I/O messages are not supported. The individual
fragments can be created using the square bracket/angle bracket notation and placed in a
Function Key Buffer or a script file. Note that fragmented Explicit Messages are supported
for both requests and responses.

2.11. strobe

The strobe command [Group2, Source Mac Id, MsgId 0] sends one bit of output data to
each allocated slave, using the Master's Bit Strobe Command Message. The message
length would be eight bytes and each allocated slave on the network is assigned one bit out
of the sixty-four, corresponding to its MAC address, to be used as it wishes. Each
allocated slave receiving a bit strobe from its master will produce a bit strobe response.
Master Emulator also supports the use of the zero length strobe. In this case, just the
command with no data is required.

Example #1
Send a strobe bit of 1 to device 60 and zero to the rest.

strobe 0 0 0 0 0 0 0 10 Then press Enter.

To send a zero length strobe to the slaves allocated to the Master Emulator, type the
following:

strobe Then press Enter.

2.12. release

The release command informs the Slave that it is no longer under the Master's control.
The parameter to the release is a hexadecimal encoded bit mask, which follows the same
format as for the allocate.

7 6 5 4 3 2 1 0
* * CYC COS * STB POLL EM

12

Pub # 2200002 Revision 1.4 1 July 1998

CYC Cyclic Connection
COS Change of State Connection
STB Bit Strobe Connection
POLL Poll Connection
EM Explicit Message Connection
* Reserved - should always be set to zero (0).

To release a connection, type:

release 1 To release the Explicit Messaging Connection
release 2 To release the Poll Connection
release 4 To release the Bit Strobe Connection
release 10 To release the COS connection
release 20 To release the Cyclic Connection
release 37 To release all Connections

2.13. slaveid

The slaveid command takes a decimal number in the range [0..63] and establishes an
internal value to be used by the commands allocate, setepr, release, poll, strobe, get, set,
cosack, open, and close. For example to set the Slave MAC ID to 57 type the following:

slaveid 57 Then press Enter.

Once set the slaveid remains in effect until it is changed. The default value is sixty-three
(63).

2.14. masterid

The masterid command takes a decimal number in the range [0..63] and establishes an
internal value to use in the commands allocate, setepr, release, poll, strobe, get, set,
cosack, open, and close for the master's MAC ID. For example to set the master's MAC
ID to 1 use the following command:

masterid 1 Then press Enter.
Once set the masterid remains in effect until it is changed. The default value is one (1).

2.15. baudrate

The baudrate command sets the baudrate to one of the three values allowed by DeviceNet.
To change the baudrate type the following:

13

Pub # 2200002 Revision 1.4 1 July 1998

baudrate 125 to set the baudrate to 125 Kbaud.
OR

baudrate 250 to set the baudrate to 250 Kbaud.
OR

baudrate 500 to set the baudrate to 500 Kbaud.

If the baudrate is changed by this command then the value displayed on the Help line will
also change. On a network which is running this change may upset any nodes which do not
track this change including forcing them or the DN-PC1 card to a Bus Off condition.

2.16. fragackid

The fragackid command is used to tell Master Emulator what identifier to use when
acknowledging a fragmented response. This response would be from an explicit message
request. Failure to specify this parameter before receiving a fragmented response will
probably cause the slave device to hang up. For example to tell Master Emulator to use
identifier 0x601 to acknowledge fragmented responses, type the following:

fragackid 601

The default value of fragackid is derived from the value of slaveid (60 for example) and is
computed as follows:

#define GROUP2 (2<<9)
#define EXP_REQ 4
#define EXP_RSP 3

fragackid = GROUP2 + (slaveid <<3) + EXP_REQ ;
= (0x400) + (0x1E0) + (0x004) ;
= 0x5E4 ;

That is, fragackid is a group 2 Explicit Request with the slave MAC ID shifted left three
places.

14

Pub # 2200002 Revision 1.4 1 July 1998

2.17. fragokid

The fragokid command is used to tell Master Emulator which message identifiers to check
for the fragmentation bit being set. Failure to set this parameter will result in erroneous
behavior when fragmented messages come in. To set the fragokid to 0x606, type the
following:

fragokid 606

The default value of fragokid is derived from the value of slaveid (60 for example) and is
computed as follows:

#define GROUP2 (2<<9)
#define EXP_REQ 4
#define EXP_RSP 3

fragokid = GROUP2 + (slaveid <<3) + EXP_RSP
= (0x400) + (0x1E0) + (0x003) ;
= 0x5E3 ;

That is fragokid is a group 2 Explicit Response with the slave MAC ID shifted left three
places.

2.18. message

The message command provides an easy way to become familiar with the format of an
explicit message because Master Emulator prompts for each byte of a non-fragmented
Explicit Message. To invoke the message command just type message, then press Enter.

Prompts for each field are displayed. Master Emulator then waits for a hexadecimal value
to be entered for each field. If there is no more data for the message the process is
terminated by pressing Enter.

2.19. class

The class command followed by a hexadecimal parameter is used to select a DeviceNet
Class for a subsequent invocation of get (attribute single), set (attribute single), or reset.
Once a value is assigned to class it retains that value until the next class command is
encountered. The value defaults to 1 (Identity Class) when DMEM is invoked. A message
is displayed confirming the current value of class. If no parameter is given then the present
value is displayed. The class parameter is entered and displayed in hexadecimal to be
consistent with the DeviceNet specification. Instance and attribute numbers are
documented in the DeviceNet specification in decimal.

15

Pub # 2200002 Revision 1.4 1 July 1998

2.20. instance

The instance command followed by a decimal parameter is used to select an instance of a
class for a subsequent get, set, or reset command. Once instance is assigned a value it
retains that value until the next instance command. The value defaults to 1 (First Instance)
of a class when DMEM is invoked. A message is displayed confirming the current value
of instance. If no parameter is given then the present value is displayed. The instance
parameter is entered and displayed in decimal to be consistent with the usage in the
DeviceNet specification. Instance may be set to 0 to refer to the separate list of attributes
belonging to the class as a whole.

2.21. get

The get command followed by a decimal parameter is used to send a get attribute single
service to the slave device over the explicit messaging connection. This command uses the
information provided by slaveid, masterid, class, instance, bodyformat and the parameter
to the get command to construct the message. As an example suppose we want to get the
vendor identification from a device. In Volume II p.6-4 of the DeviceNet specification we
see that Vendor is attribute 1 of instance 1 of the Identity Class. Let us suppose that we
have as MACID #1 (masterid 1) established a connection to MACID #63 (slaveid 63) and
we enter the command:

get 1

The transmitted message will be constructed as follows:

#define GROUP2 2
#define EXP_REQ 4
#define GET_ATTRIBUTE_SINGLE 14

• Identifier = (GROUP2<<9) + ((slaveid) <<3)+ EXP_REQ ;
• = (0x400) + (0x1F8) + (0x004) ;
• = 0x5FC ;
• DATA[0] = masterid ; // Frag = 0, and Xid = 0
• = 0x01 ;
• DATA[1] = GET_ATTRIBUTE_SINGLE ;
• = 0x0E ;
• DATA[2] = class ; //default = 1
• = 0x01 ;
• DATA[3] = instance ; //default = 1
• = 0x01 ;
• DATA[4] = attribute // parameter of get command

16

Pub # 2200002 Revision 1.4 1 July 1998

• = 0x01

Using the syntax for a general purpose message, the above lines would cause the following
message to be sent:

[5FC] <01 0E 01 01 01>

The response from the slave would show up on the receive screen and look something like:
[5FB] <01 8E 14 00>

This would identify the vendor of the slave device as Huron Net Works!

2.22. set

The set command is the opposite of the get. The first parameter is in decimal and is the
attribute number of the class and instance that is to be set. After the attribute number
comes one or more bytes of attribute value. While maybe not the most convenient for word
or longer attributes it is simple and general. Note that word parameters are specified in
little-endian format with the low order byte coming first. If we do a set 1 without changing
anything from the above example we should get an error message since Vendor is not a
settable attribute of the Identity Class. The coding would be the same as the example
above except the GET_ATTRIBUTE_SINGLE would be replaced by a
SET_ATTRIBUTE_SINGLE (0x10) and two data bytes would be added as DATA[5] and
DATA[6].

2.23. chain

The chain command takes a filename as a parameter. This command preserves the
functionality of the play command (section 2.5) from DMEM Version 1.08 and earlier.
Any file being read for commands is closed. The file specified in the parameter is opened
and input continues from the beginning of the new file. See Section 2.5 on play for the new
description of its functionality.

2.24. mask

The mask command takes a hexadecimal argument as a parameter. In conjunction with the
match command the hardware screener in the 82C200 chip on the DN-PC1 can be
programmed to accept certain messages and ignore other traffic on the network. In
constructing a mask place a zero(0) in each position of the eleven bit CAN Identifier field
that is significant for determining whether a message is to be accepted. Place a one (1) in
each position which is a "don't care". Bit 10 (MSB) of the CAN Identifier field
corresponds to bit 10 of the mask, while bit 0 (LSB) of the CAN Identifier field
corresponds to bit 0 of the mask. This command will not take effect until the next

17

Pub # 2200002 Revision 1.4 1 July 1998

occurrence of the baudrate command. If the same baudrate which is in effect is used then
the new values of mask and match will take effect and the baudrate will remain
unchanged.

The hardware screener in the 82C200 CAN Controller chip works on the most significant
eight bits of the eleven bit CAN Identifier field. Arguments to the mask and match
commands assume that all eleven bits of the CAN Identifier field participate in the process.
DMEM will adjust these values before writing them to the CAN Controller.

See the example in the following section.

2.25. match

The match command takes a hexadecimal argument as a parameter. In conjunction with the
mask command the hardware screener in the 82C200 chip on the DN-PC1 can be
programmed to accept certain messages and ignore other traffic on the network. In
constructing the match place a zero(0) in each position of the eleven bit CAN Identifier
field that is to be a zero (0). Place a one (1) in each position which is to be a one (1).
Bit 10 (MSB) of the CAN Identifier field corresponds to bit 10 of the match, while bit 0
(LSB) of the CAN Identifier field corresponds to bit 0 of the match. This command will
not take effect until the next occurrence of the baudrate command. If the same baudrate
which is in effect is used then the new values of mask and match will take effect and the
baudrate will remain unchanged.

The hardware screener in the 82C200 CAN Controller chip works on the most significant
eight bits of the eleven bit CAN Identifier field. Arguments to the mask and match
commands assume that all eleven bits of the CAN Identifier field participate in the process.
DMEM will adjust these values before writing them to the CAN Controller.

Mask & Match Example #1

Suppose that we want to monitor only the poll responses from a particular slave
node (Node 60). We construct the mask condition as follows:

BIT 10 = 0 Group 1 Message
BITS 9-6 = 1111 Poll Response Message ID
BITS 5-0 = 111100 MAC ID 60

mask 0
match 3FC
baudrate 125

Since only the most significant eight bits take part in the hardware screening
process, all poll responses from nodes 56 to 63 will be received.

18

Pub # 2200002 Revision 1.4 1 July 1998

Mask & Match Example #2

Suppose we want to monitor all Group 3 messages. the mask and match commands
would be as follows:

mask 1FF
match 600
baudrate 125

Only bits 10 and 9 of the CAN Identifier field are significant, and they must both be
one.

2.26. reset
The reset command uses the internal variables class and instance to build an explicit
message whose service code is a reset service (0x05). As with other explicit messages the
internal variables slaveid, masterid, and bodyformat are used to construct the identifier,
the message header, and the message body. Not all objects support a reset service, so
error responses are to be expected in many cases. Two DeviceNet objects which typically
support the reset service are the identity object and the connection object.

2.27. cosack
The cosack command will take up to eight hexadecimal parameters and build a Change of
State/Cyclic Acknowledge Message. This is a group 2 message with destination (slaveid)
MAC address and message ID two(2). It operates the same as a poll except for the change
of message ID. It is hard to imagine how this might be used in a script file, but it is
included for completeness.

Example
Send four(4) bytes of data as a Change of State Acknowledge

cosack 14 00 19 26 Then press Enter

2.28. open
The open command takes three decimal parameters, and constructs a UCMM Open Explicit
Request Message. This message is a group 3 message, with a message ID of six(6), and
the Source MAC ID (masterid) The three parameters are the requested body format, the
group select, and the source message id in that order. No error checking is done on the
parameters so many possible combinations will result in error responses or other
unexpected conditions. Valid ranges for each of the three parameters is [0..15]. The data
field of the message consists of the message header, the service code (0x4B), and the three
parameters packed into two bytes. See DeviceNet Specification Vol. I, Rel 2.0, pp. 4-7 to
4-10.

19

Pub # 2200002 Revision 1.4 1 July 1998

Example
Construct a UCMM Open, asking for DeviceNet 8/8, on Group 3 with Message ID
two(2).

open 0 3 2 Then press Enter

The resulting message might look like

[781]<3F 4B 00 32>

Example
Construct a UCMM Open asking for DeviceNet 16/16, on Group 1 with Message
ID 10

open 2 1 10 Then press Enter

The resulting message might look like

[781]<7F 4B 02 1A>

The open command sets the value of an internal variable called ucmm to the value one(1).
It can be toggled between one(1) and zero(0) with the ucmm command.

2.29. close
The close command takes a decimal parameter which is the instance number of the
connection to close. It constructs a UCMM Close Connection Request which is a group 3
message, with message ID six(6) and source MAC ID (masterid). The data field consists
of the message header, the service code (0x4C) and the connection instance number. See
the DeviceNet Specification Vol. I, Rel 2.0, pp. 4-17 to 4-19.

Example
Close connection instance #3 on the slave device

close 3 Then press Enter

The resulting message might look like

[781]<3F 4C 03 00>

The internal variable ucmm is set to zero

2.30. bodyformat
The bodyformat command takes a decimal parameter which may be a in the range zero(0)
to three(3). The value is saved in an internal variable; it is then used to construct Explicit
Request Messages in any of the acceptable formats. The following table shows the

20

Pub # 2200002 Revision 1.4 1 July 1998

correspondence between the values of bodyformat and the format of a corresponding
Explicit Request.

Value Meaning
0 DeviceNet(8/8) Class= 8 bits, Instance= 8 bits
1 DeviceNet(8/16) Class= 8 bits, Instance = 16 bits
2 DeviceNet(16/16) Class= 16 bits, Instance = 16 bits
3 DeviceNet(16/8) Class= 16 bits, Instance = 8 bits

2.31. ucmm
The ucmm command toggles an internal variable which selects either the Group 2
predefined Explicit Request or the Explicit Request created by the UCMM. After both a
UCMM connection (see open) and the predefined Explicit (see allocate) have been
created, this toggle will allow a choice of which method to use. If using the UCMM
Explicit Connection make sure to set the fragackok, and fragidok variables.

21

Pub # 2200002 Revision 1.4 1 July 1998

3. FUNCTION KEYS

3.1. Use of Function Keys

Function Keys are used to store common sequences of commands and messages in a single
memory buffer. Then by pressing a single key the entire sequence may be executed. For
example, instead of typing:

allocate 7
setepr 1 0 This may all be stored in
setepr 2 0 the Function Key F1.
setepr 3 0

If, during debugging, the slave device needs to be reset, then connections may be
reestablished by pressing just the F1 key. Function Keys F1 through F12 may be used, and
may be edited, saved, and recalled.

3.2. Defining a Function Key

If a Function Key has no definition, then the first time it is depressed an editing screen will
appear and a definition may be entered. Once a key is defined subsequent depressions will
cause the definition to be replayed as if the characters had been entered from the keyboard
again. After a function key is defined it may be edited by holding down the shift key and
depressing the function key. Depressing Alt and a Function Key will cause the buffer
associated with that function key to be cleared. Depressing Ctrl and a Function Key
performs no function, however an acknowledgment that the key was seen is displayed.

To enter commands into a Function Key, just type as if the commands were being entered at
the keyboard. Once the desired commands are entered, press the F6 key to exit the
Function Key Menu. You have now defined a Function Key.

3.3. Function Key Editor

The Function Key Editor consists of editing area and a listing of the Function Key
definitions while in the Function Key Editor. While in the Function Key Editor, the F1
through F6 keys have the following functions.

Function Description

22

Pub # 2200002 Revision 1.4 1 July 1998

Key

F1 - Displays the contents of the next Function Key, increasing from
F1 to F12 and wrapping around to F1 again.

F2 - Displays the contents of the previous Function Key, decreasing
from F12 to F1 and wrapping around to F12 again.

F3 - Clears all data in the displayed Function Key buffer.

F4 - Allows entry of a 12 character label for the Function Key.

F5 - Used to reformat lines longer than 64 characters read in from a
file, fit the 64 characters per line length of the display.

F6 - Exits the Function Key Editor, and saves the data in memory.

23

Pub # 2200002 Revision 1.4 1 July 1998

4. APPLICATION HINTS

4.1. Allocating Connections

To debug various kinds of messages and objects on a slave device it is necessary to
establish at least an Explicit Messaging Connection. Since each connection has associated
with it an expected packet rate (EPR) which causes the connection to time out after four(4)
times the EPR has elapsed with no message; it is useful to set the EPRs of all connections
to zero. This can be accomplished with either a function key definition or a script file with
the following information:

masterid 1
slaveid 60
allocate 7
setepr 1 0
setepr 2 0
setepr 3 0

If this is assigned to a function key buffer and saved then it can be used to establish the
connections after resetting the slave device.

4.2. Simple Scanner

The functions of a simple scanner (MACID = 1) with two slave devices (MACIDs 52 and
54) can be implemented with one function key definition and one script file.

The function key definition would look like:

masterid 1
slaveid 52
allocate 3
setepr 1 0
setepr 2 50
slaveid 54
allocate 3
setepr 1 0
setepr 2 50

The script file would look like

slaveid 52
poll 07 03 05 09

24

Pub # 2200002 Revision 1.4 1 July 1998

slaveid 54
poll 08 04 06 0A
replay

After executing the function key once and receiving a success response to the allocate and
set EPR messages, type "play" and the name of the script file to start a continuous scan of
the two slave devices.

4.3. Nested Play Files

One of the uses of master emulator is automating a checkout procedure. Each DeviceNet
device is required to implement certain object classes. To get the value of each attribute of
each object class and to verify that illegal values produce the expected error response a
sequence of nested play files may be created. In the following scripts the notation (eof)
represents the end of file. It should not be placed literally in the file.

The top level play file called getall.scr might look like the following:

getall.scr
Do the Identity Object
play idobj.scr
Do the DeviceNet Object
play dnetobj.scr
Do the predefined connection objects
class 5
instance 1
play cnxn.scr
instance 2
play cnxn.scr
instance 3
play cnxn.scr
(eof)

The file idobj.scr might look like the following:

idobj.scr
class 1
instance 1
get 1
get 2
get 3
...
get 7
Verify error on attribute #8
get 8

25

Pub # 2200002 Revision 1.4 1 July 1998

(eof)

The file dnetobj.scr might look like the following

dnetobj.scr
class 3
instance 1
get 1
get 2
get 3
get 4
get 5
Verify error on attribute #6
get 6
(eof)

The file cnxn.scr might look like the following:

cnxn.scr
get 1
get 2
...
Verify errors on attribute #10 and #11 per DeviceNet Spec. Vol. I, Rev 2.0, p5-7
get 10
get 11
...
get 16
(eof)

The whole process is invoked from the keyboard by entering the command
play getall.scr Then press return

If a record of the transactions is required a log command may be inserted at strategic
points.

4.4. Keyboard Escape

In this example we presume that a group of slave devices need to be given their serial
numbers to be stored in some non-volatile memory. We further assume that some sequence
of DeviceNet explicit messages is used to provide an unlock mechanism for programming
the serial number. We want to construct a play file that will automate the procedure. In
this example the masterid is 1 and the slaveid is 63. Also the Function Key F1 is
presumed to contain an allocate command and the appropriate setepr commands. To
unlock the serial number we must do a series of get commands to various classes,
instances, and attributes: followed by a set to the serial number attribute of the identity
object. An example script might look like the following:

26

Pub # 2200002 Revision 1.4 1 July 1998

serial.scr
Unlock the set serial number lock
class 20
instance 45
get 7
get 100
get 1
#
set the serial number
Must be a fragmented request
Enter four hexadecimal bytes in place of the dollar sign ($)
#
[5E4]<81 00 10 01 01 06 $>
(eof)

The $ will interrupt the processing flow and allow the parameters of the set command to be
entered from the keyboard replacing the $

